On the Josefson–Nissenzweig theorem for C(K)-spaces

Damian Sobota

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Joint work with Lyubomyr Zdomskyy.

Theorem (Josefson–Nissenzweig)

For every infinite-dimensional Banach space X there exists a sequence of continuous functionals $\langle \varphi_n : n \in \omega \rangle$ on X such that $\|\varphi_n\| = 1$ for every $n \in \omega$ and $\varphi_n(x) \xrightarrow{n} 0$ for every $x \in X$.

Theorem (Josefson–Nissenzweig)

For every infinite-dimensional Banach space X there exists a sequence of continuous functionals $\langle \varphi_n : n \in \omega \rangle$ on X such that $\|\varphi_n\| = 1$ for every $n \in \omega$ and $\varphi_n(x) \xrightarrow[n]{} 0$ for every $x \in X$.

Proofs:

- Josefson '75 (very intricate)
- Nissenzweig '75 (intricate)
- Hagler and Johnson '77 (legible, but the definition of φ_n 's is non-constructive)
- Behrends '94 (clear, quite elementary and constructive for C(K))

The J–N theorem for C(K)-spaces

K — an infinite compact Hausdorff space

C(K) — the Banach space of real-valued continuous functions on K with the supremum norm

The J–N theorem for C(K)-spaces

K — an infinite compact Hausdorff space

C(K) — the Banach space of real-valued continuous functions on K with the supremum norm

 $\mathcal{C}(eta\omega)\cong\ell_\infty$ — the Banach space of bounded sequences

 $C([0, \omega]) \cong c$ — the Banach space of convergent sequences

 c_0 — the Banach space of sequences converging to 0 ($c_0 \simeq c$)

The J–N theorem for C(K)-spaces

K — an infinite compact Hausdorff space

C(K) — the Banach space of real-valued continuous functions on K with the supremum norm

 $\mathcal{C}(eta\omega)\cong\ell_\infty$ — the Banach space of bounded sequences

 $C([0, \omega]) \cong c$ — the Banach space of convergent sequences

 c_0 — the Banach space of sequences converging to 0 ($c_0\simeq c$)

 $\varphi \in \mathcal{C}(\mathcal{K})^* \Rightarrow$ there exists a unique nice measure μ on \mathcal{K} :

$$arphi(f) = \int_{\mathcal{K}} f \mathsf{d} \mu \quad , \ \forall f \in C(\mathcal{K})$$

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

• there exists $\langle \mu_n : n \in \omega \rangle$ of measures such that: • $\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$ for some $\alpha_i^n \in \mathbb{R}$ and $A_n \in [D]^{<\omega}$,

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

• there exists $\langle \mu_n : n \in \omega \rangle$ of measures such that:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_i^n \in \mathbb{R}$ and $A_n \in [D]^{<\omega}$,
• $\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1$,

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

• there exists $\langle \mu_n : n \in \omega \rangle$ of measures such that:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_i^n \in \mathbb{R}$ and $A_n \in [D]^{<\omega}$,
• $\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1$,
• $\mu_n(f) \longrightarrow 0$ for every $f \in C(K)$.

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_i^n \in \mathbb{R}$ and $A_n \in [D]^{<\omega}$,
• $\|\mu_n\| = \sum_{i \in A_n} |\alpha_i^n| = 1$,

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

there exists ⟨μ_n: n ∈ ω⟩ of measures such that:
μ_n = Σ_{x∈A_n} αⁿ_xδ_x for some αⁿ_i ∈ ℝ and A_n ∈ [D]^{<ω},
||μ_n|| = Σ_{x∈A_n} |αⁿ_x| = 1,
μ_n(f) → 0 for every f ∈ C(K).
there exists ⟨μ_n: n ∈ ω⟩ and ⟨λ_k ∈ {±1}^ω: k ∈ ω⟩ such that:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_i^n \in \mathbb{R}$ and $A_n \in [D]^{<\omega}$,
• $\|\mu_n\| = \sum_{i \in A_n} |\alpha_i^n| = 1$,

• $\forall L$ — Banach limit $\exists \delta > 0 \ \forall k \in \omega : \ \left\| L(\lambda_k(n)\mu_n(\cdot)) \right\| \ge \delta$

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

there exists ⟨μ_n: n ∈ ω⟩ of measures such that:
μ_n = Σ_{x∈A_n} αⁿ_xδ_x for some αⁿ_i ∈ ℝ and A_n ∈ [D]^{<ω},
||μ_n|| = Σ_{x∈A_n} |αⁿ_x| = 1,
μ_n(f) → 0 for every f ∈ C(K).
there exists ⟨μ_n: n ∈ ω⟩ and ⟨λ_k ∈ {±1}^ω: k ∈ ω⟩ such that:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_i^n \in \mathbb{R}$ and $A_n \in [D]^{<\omega}$,
• $\|\mu_n\| = \sum_{i \in A_n} |\alpha_i^n| = 1$,

• $\forall L$ — Banach limit $\exists \delta > 0 \ \forall k \in \omega : \ \left\| L(\lambda_k(n)\mu_n(\cdot)) \right\| \ge \delta$ and $L(\lambda_k(n)\mu_n(f)) \xrightarrow{k} 0$ for every $f \in C(K)$.

D — a countable discrete subset of K

For $x \in K$ δ_x is a nice measure on K, so $\delta_x \in C(K)^*$.

Two cases:

•
$$\|\mu_n\| = \sum_{i \in A_n} |\alpha_i^n| = 1,$$

• $\forall L$ — Banach limit $\exists \delta > 0 \ \forall k \in \omega : \ \left\| L(\lambda_k(n)\mu_n(\cdot)) \right\| \ge \delta$ and $L(\lambda_k(n)\mu_n(f)) \xrightarrow{k} 0$ for every $f \in C(K)$.

$$K = \beta \omega : \quad \mu_n = \delta_n \qquad \delta = 1$$

The finite Josefson-Nissenzweig property

Question

Which compact spaces satisfy the first case?

Which compact spaces satisfy the first case?

A compact space K has **the Josefson–Nissenzweig property** (**the JNP**) if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of measures on K such that:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_x^n \in \mathbb{R}$ and $A_n \in [K]^{<\omega}$,

Which compact spaces satisfy the first case?

A compact space K has **the Josefson–Nissenzweig property** (**the JNP**) if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of measures on K such that:

•
$$\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$$
 for some $\alpha_x^n \in \mathbb{R}$ and $A_n \in [K]^{<\omega}$,

•
$$\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1$$
,

Which compact spaces satisfy the first case?

A compact space K has **the Josefson–Nissenzweig property** (**the JNP**) if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of measures on K such that:

• $\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$ for some $\alpha_x^n \in \mathbb{R}$ and $A_n \in [K]^{<\omega}$,

•
$$\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1$$
,

•
$$\mu_n(f) \xrightarrow{n} 0$$
 for every $f \in C(K)$.

Which compact spaces satisfy the first case?

A compact space K has **the Josefson–Nissenzweig property** (**the JNP**) if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of measures on K such that:

• $\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$ for some $\alpha_x^n \in \mathbb{R}$ and $A_n \in [K]^{<\omega}$,

•
$$\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1,$$

•
$$\mu_n(f) \xrightarrow{n} 0$$
 for every $f \in C(K)$.

 $\langle \mu_n: n \in \omega \rangle$ is a Josefson–Nissenzweig sequence (JN).

Which compact spaces satisfy the first case?

A compact space K has **the Josefson–Nissenzweig property** (**the JNP**) if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of measures on K such that:

• $\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$ for some $\alpha_x^n \in \mathbb{R}$ and $A_n \in [K]^{<\omega}$,

•
$$\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1$$
,

•
$$\mu_n(f) \xrightarrow{n} 0$$
 for every $f \in C(K)$.

 $\langle \mu_n: n \in \omega \rangle$ is a Josefson-Nissenzweig sequence (JN).

Examples:

Which compact spaces satisfy the first case?

A compact space K has **the Josefson–Nissenzweig property** (**the JNP**) if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of measures on K such that:

• $\mu_n = \sum_{x \in A_n} \alpha_x^n \delta_x$ for some $\alpha_x^n \in \mathbb{R}$ and $A_n \in [K]^{<\omega}$,

•
$$\|\mu_n\| = \sum_{x \in A_n} |\alpha_x^n| = 1$$
,

•
$$\mu_n(f) \xrightarrow{n} 0$$
 for every $f \in C(K)$.

 $\langle \mu_n: n \in \omega \rangle$ is a Josefson-Nissenzweig sequence (JN).

Examples:

1
$$x_n \to x \in K \Rightarrow \langle \frac{1}{2} (\delta_{x_n} - \delta_x) : n \in \omega \rangle$$
 is JN.

2 $\beta\omega$ does not have the JNP (Banakh–Kąkol–Śliwa '18)

More examples

If K has a non-trivial convergent sequence, then K has the JNP.

Corollary

K has the JNP, if at least one of the following holds:

• K is metric,

Corollary

K has the JNP, if at least one of the following holds:

- K is metric,
- @ K is Eberlein / Corson / Valdivia / Rosenthal / Radon-Nikodym,

Corollary

K has the JNP, if at least one of the following holds:

- K is metric,
- @ K is Eberlein / Corson / Valdivia / Rosenthal / Radon-Nikodym,
- $w(K) \leq \max(\mathfrak{s}, \operatorname{cov}(\mathcal{M})).$

Corollary

K has the JNP, if at least one of the following holds:

- K is metric,
- @ K is Eberlein / Corson / Valdivia / Rosenthal / Radon-Nikodym,

$$\ \, {\it s}({\it K}) \leqslant \max \left({\frak s}, {\rm cov}({\cal M}) \right).$$

If for compact K and L we have $C_p(K) ≃ C_p(L)$ and K has the JNP, then L has the JNP, too.

Corollary

K has the JNP, if at least one of the following holds:

- K is metric,
- @ K is Eberlein / Corson / Valdivia / Rosenthal / Radon-Nikodym,

3
$$w(K) \leq \max(\mathfrak{s}, \operatorname{cov}(\mathcal{M}))$$
.

If for compact K and L we have $C_p(K) ≃ C_p(L)$ and K has the JNP, then L has the JNP, too.

Corollary

For every K, the Alexandrov duplicate AD(K) has the JNP, since

 $C_{p}(AD(K)) \simeq C_{p}(K \sqcup \alpha(|K|))$

Schachermayer's example:

$$\mathcal{B} = \{A \in \wp(\omega) \colon \exists N \ \forall n > N \colon \ 2n \in A \equiv 2n + 1 \in A\}$$

Schachermayer's example:

$$\mathcal{B} = \{A \in \wp(\omega) \colon \exists N \ \forall n > N \colon \ 2n \in A \equiv 2n + 1 \in A\}$$

Theorem

The Stone space St(B) has the following properties:

• St(A) does not contain any non-trivial convergent sequences,

Schachermayer's example:

$$\mathcal{B} = \{A \in \wp(\omega) \colon \exists N \ \forall n > N \colon \ 2n \in A \equiv 2n + 1 \in A\}$$

Theorem

The Stone space St(B) has the following properties:

1 St(A) does not contain any non-trivial convergent sequences,

Schachermayer's example:

$$\mathcal{B} = \{A \in \wp(\omega) \colon \exists N \ \forall n > N \colon \ 2n \in A \equiv 2n + 1 \in A\}$$

Theorem

The Stone space St(B) has the following properties:

1 St(A) does not contain any non-trivial convergent sequences,

• $\mu_n = \frac{1}{2}(\delta_{2n} - \delta_{2n+1})$ defines a JN-sequence.

Schachermayer's example:

$$\mathcal{B} = \{A \in \wp(\omega) \colon \exists N \ \forall n > N \colon \ 2n \in A \equiv 2n + 1 \in A\}$$

Theorem

The Stone space St(B) has the following properties:

1 St(A) does not contain any non-trivial convergent sequences,

• $\mu_n = \frac{1}{2}(\delta_{2n} - \delta_{2n+1})$ defines a JN-sequence.

Remark: There are examples having similar properties but such that if $\langle \mu_n : n \in \omega \rangle$ is a JN-sequence, then $\lim_n |\operatorname{supp} (\mu_n)| = \infty$.

$$\forall f \in C(K): \ \mu_n(f) \xrightarrow{n} 0 \Rightarrow \forall f - \text{Borel, bounded}: \ \mu_n(f) \xrightarrow{n} 0.$$

$$\forall f \in C(K): \ \mu_n(f) \xrightarrow{n} 0 \ \Rightarrow \ \forall f - Borel, bounded: \ \mu_n(f) \xrightarrow{n} 0.$$

For K totally disconnected — equivalently:

$$\forall A \in Clopen(K): \ \mu_n(A) \xrightarrow[n]{} 0 \ \Rightarrow \ \forall A \in Borel(K): \ \mu_n(A) \xrightarrow[n]{} 0.$$

$$\forall f \in C(K): \ \mu_n(f) \xrightarrow{n} 0 \ \Rightarrow \ \forall f \longrightarrow \text{Borel, bounded}: \ \mu_n(f) \xrightarrow{n} 0.$$

For K totally disconnected — equivalently:

 $\forall A \in Clopen(K): \ \mu_n(A) \xrightarrow[n]{} 0 \ \Rightarrow \ \forall A \in Borel(K): \ \mu_n(A) \xrightarrow[n]{} 0.$

Examples:

 K — extremely disconnected ⇒ K has the Grothendieck property (Grothendieck '50s)

$$\forall f \in C(K): \ \mu_n(f) \xrightarrow{n} 0 \ \Rightarrow \ \forall f \longrightarrow \text{Borel, bounded}: \ \mu_n(f) \xrightarrow{n} 0.$$

For K totally disconnected — equivalently:

 $\forall A \in Clopen(K): \ \mu_n(A) \xrightarrow[n]{} 0 \ \Rightarrow \ \forall A \in Borel(K): \ \mu_n(A) \xrightarrow[n]{} 0.$

Examples:

- K extremely disconnected ⇒ K has the Grothendieck property (Grothendieck '50s)

 K does not have the JNP if and only if C_p(K) contains no complemented copy of c₀ ⊆ ℝ^N (Banakh–Kąkol–Śliwa '18).

- K does not have the JNP if and only if C_p(K) contains no complemented copy of c₀ ⊆ ℝ^N (Banakh–Kąkol–Śliwa '18).
- K has the GP if and only if C(K) contains no complemented copy of c_0 (Schachermayer '81, Cembranos '84).

- K does not have the JNP if and only if C_p(K) contains no complemented copy of c₀ ⊆ ℝ^N (Banakh–Kąkol–Śliwa '18).
- **2** K has the GP if and only if C(K) contains no complemented copy of c_0 (Schachermayer '81, Cembranos '84).

Corollary by the Closed Graph Theorem

If K has the Grothendieck property, then K does not have the Josefson–Nissenzweig property.

- K does not have the JNP if and only if C_p(K) contains no complemented copy of c₀ ⊆ ℝ^N (Banakh–Kąkol–Śliwa '18).
- **2** K has the GP if and only if C(K) contains no complemented copy of c_0 (Schachermayer '81, Cembranos '84).

Corollary by the Closed Graph Theorem

If K has the Grothendieck property, then K does not have the Josefson–Nissenzweig property.

Question

What about the converse?

- K does not have the JNP if and only if C_p(K) contains no complemented copy of c₀ ⊆ ℝ^N (Banakh–Kąkol–Śliwa '18).
- **2** K has the GP if and only if C(K) contains no complemented copy of c_0 (Schachermayer '81, Cembranos '84).

Corollary by the Closed Graph Theorem

If K has the Grothendieck property, then K does not have the Josefson–Nissenzweig property.

Question

What about the converse?

Answer

Does not hold.

Let \mathcal{M} be a subset of $C(K)^*$. A compact space K has **the Grothendieck property for** \mathcal{M} (**the GP for** \mathcal{M}) if for every sequence $\langle \mu_n \in \mathcal{M} : n \in \omega \rangle$ on K we have: $\forall f \in C(K) : \mu_n(f) \xrightarrow{n} 0 \Rightarrow \forall f$ — Borel, bounded: $\mu_n(f) \xrightarrow{n} 0$

Let \mathcal{M} be a subset of $C(K)^*$. A compact space K has **the Grothendieck property for** \mathcal{M} (**the GP for** \mathcal{M}) if for every sequence $\langle \mu_n \in \mathcal{M} : n \in \omega \rangle$ on K we have: $\forall f \in C(K) : \mu_n(f) \xrightarrow{n} 0 \Rightarrow \forall f$ — Borel, bounded: $\mu_n(f) \xrightarrow{n} 0$

Examples:

•
$$\mathcal{M} = \ell_1(\mathcal{K})$$
 — measures of countable support:
 $\mu \in \ell_1(\mathcal{K}) \equiv \mu = \sum_{n \in \omega} \alpha_n \delta_{x_n} , \ x_n \in \mathcal{K} , \ \sum_{n \in \omega} |\alpha_n| < \infty$

Let \mathcal{M} be a subset of $C(K)^*$. A compact space K has **the Grothendieck property for** \mathcal{M} (**the GP for** \mathcal{M}) if for every sequence $\langle \mu_n \in \mathcal{M} : n \in \omega \rangle$ on K we have: $\forall f \in C(K) : \mu_n(f) \xrightarrow{n} 0 \Rightarrow \forall f$ — Borel, bounded: $\mu_n(f) \xrightarrow{n} 0$

Examples:

•
$$\mathcal{M} = \ell_1(\mathcal{K})$$
 — measures of countable support:
 $\mu \in \ell_1(\mathcal{K}) \equiv \mu = \sum_{n \in \omega} \alpha_n \delta_{x_n}, x_n \in \mathcal{K}, \sum_{n \in \omega} |\alpha_n| < \infty$
• $\mathcal{M} = \operatorname{span} \delta(\mathcal{K})$ — measures of finite support

Let \mathcal{M} be a subset of $C(K)^*$. A compact space K has **the Grothendieck property for** \mathcal{M} (**the GP for** \mathcal{M}) if for every sequence $\langle \mu_n \in \mathcal{M} : n \in \omega \rangle$ on K we have: $\forall f \in C(K) : \mu_n(f) \xrightarrow{n} 0 \Rightarrow \forall f$ — Borel, bounded: $\mu_n(f) \xrightarrow{n} 0$

Examples:

•
$$\mathcal{M} = \ell_1(K)$$
 — measures of countable support:
 $\mu \in \ell_1(K) \equiv \mu = \sum_{n \in \omega} \alpha_n \delta_{x_n}, x_n \in K, \sum_{n \in \omega} |\alpha_n| < \infty$
• $\mathcal{M} = \operatorname{span} \delta(K)$ — measures of finite support

Theorem

For a compact space K TFAE:

K has the JNP.

Let \mathcal{M} be a subset of $C(K)^*$. A compact space K has **the Grothendieck property for** \mathcal{M} (**the GP for** \mathcal{M}) if for every sequence $\langle \mu_n \in \mathcal{M} : n \in \omega \rangle$ on K we have: $\forall f \in C(K) : \mu_n(f) \xrightarrow{n} 0 \Rightarrow \forall f$ — Borel, bounded: $\mu_n(f) \xrightarrow{n} 0$

Examples:

•
$$\mathcal{M} = \ell_1(K)$$
 — measures of countable support:
 $\mu \in \ell_1(K) \equiv \mu = \sum_{n \in \omega} \alpha_n \delta_{x_n}, x_n \in K, \sum_{n \in \omega} |\alpha_n| < \infty$
• $\mathcal{M} = \operatorname{span} \delta(K)$ — measures of finite support

Theorem

For a compact space K TFAE:

K has the JNP.

- K does not have the GP for $\ell_1(K)$.
- K does not have the GP for span $\delta(K)$.

Plebanek's example

There exists a space K such that every separable closed subset $L \subseteq K$ has the Grothendieck property, but K does not have the Grothendieck property.

Corollary

There exists K without the GP and without the JNP.

In other words, there exists K without the GP but with the GP for $\ell_1(K)$.

Plebanek's example

There exists a space K such that every separable closed subset $L \subseteq K$ has the Grothendieck property, but K does not have the Grothendieck property.

Corollary

There exists K without the GP and without the JNP.

In other words, there exists K without the GP but with the GP for $\ell_1(K)$.

Question

Does there exist a separable space K without the GP but with the GP for $\ell_1(K)$? Hereditarily separable K?

Theorem (Khurana '78, Cembranos '84)

For every compact spaces K and L the product $K \times L$ does not have the Grothendieck property.

Question

Does $(\beta \omega)^2$ have the Grothendieck property for ℓ_1 ?

Theorem (Khurana '78, Cembranos '84)

For every compact spaces K and L the product $K \times L$ does not have the Grothendieck property.

Question

Does $(\beta \omega)^2$ have the Grothendieck property for ℓ_1 ?

Theorem

 $(\beta\omega)^2$ has the JNP, so it does not have the GP for $\ell_1((\beta\omega)^2)$.

Theorem (Khurana '78, Cembranos '84)

For every compact spaces K and L the product $K \times L$ does not have the Grothendieck property.

Question

Does $(\beta \omega)^2$ have the Grothendieck property for ℓ_1 ?

Theorem

 $(\beta\omega)^2$ has the JNP, so it does not have the GP for $\ell_1((\beta\omega)^2)$.

There is a JN-sequence $\langle \mu_n : n \in \omega \rangle$ on $(\beta \omega)^2$ such that supp $(\mu_n) \subseteq \omega^2$ for every $n \in \omega$.

Theorem (Khurana '78, Cembranos '84)

For every compact spaces K and L the product $K \times L$ does not have the Grothendieck property.

Question

Does $(\beta \omega)^2$ have the Grothendieck property for ℓ_1 ?

Theorem

 $(\beta\omega)^2$ has the JNP, so it does not have the GP for $\ell_1((\beta\omega)^2)$.

There is a JN-sequence $\langle \mu_n : n \in \omega \rangle$ on $(\beta \omega)^2$ such that supp $(\mu_n) \subseteq \omega^2$ for every $n \in \omega$.

Corollary

For every K and L the product $K \times L$ does not have the Grothendieck property for $\ell_1(K \times L)$.

A compact space K is **obtained from a system of minimal extensions** if K is the inverse limit of a system $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \delta \rangle$ such that:

A compact space K is **obtained from a system of minimal extensions** if K is the inverse limit of a system $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \delta \rangle$ such that:

• K_{γ} is the inverse limit of $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \gamma \rangle$,

A compact space K is **obtained from a system of minimal extensions** if K is the inverse limit of a system $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \delta \rangle$ such that:

- K_{γ} is the inverse limit of $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \gamma \rangle$,
- $K_{\alpha+1}$ is a minimal extension of K_{α} , i.e. there is a unique point $x_{\alpha} \in K_{\alpha}$ such that $|(\pi_{\alpha}^{\alpha+1})^{-1}(x_{\alpha})| = 2$ and $|(\pi_{\alpha}^{\alpha+1})^{-1}(x)| = 1$ for every $x \neq x_{\alpha}$,

A compact space K is **obtained from a system of minimal extensions** if K is the inverse limit of a system $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \delta \rangle$ such that:

- K_{γ} is the inverse limit of $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \gamma \rangle$,
- $K_{\alpha+1}$ is a minimal extension of K_{α} , i.e. there is a unique point $x_{\alpha} \in K_{\alpha}$ such that $|(\pi_{\alpha}^{\alpha+1})^{-1}(x_{\alpha})| = 2$ and $|(\pi_{\alpha}^{\alpha+1})^{-1}(x)| = 1$ for every $x \neq x_{\alpha}$,
- $K_0 = 2^{\omega}$ and every K_{α} is perfect.

A compact space K is **obtained from a system of minimal extensions** if K is the inverse limit of a system $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \delta \rangle$ such that:

- K_{γ} is the inverse limit of $\langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha < \beta < \gamma \rangle$,
- $K_{\alpha+1}$ is a minimal extension of K_{α} , i.e. there is a unique point $x_{\alpha} \in K_{\alpha}$ such that $|(\pi_{\alpha}^{\alpha+1})^{-1}(x_{\alpha})| = 2$ and $|(\pi_{\alpha}^{\alpha+1})^{-1}(x)| = 1$ for every $x \neq x_{\alpha}$, • $K_{0} = 2^{\omega}$ and every K_{α} is perfect.

Remark: Many consistent examples of Efimov spaces are obtained by minimal extensions, e.g.

Fedorchuk (\Diamond), Dow and Pichardo-Mendoza (CH), Dow and Shelah (MA+ \neg CH) etc.

Theorem

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K has the JNP.

Theorem

If K is a compact space obtained from a system of minimal extensions of length at most c, then K has the JNP.

A JN-sequence on 2^{ω}

$$\forall n \in \omega, i \in 2, s \in 2^n \colon x_s^i := s^{\text{i}iiiiii} \dots$$
$$\mu_n = \frac{1}{2^{n+1}} \sum_{s \in 2^n} \left(\delta_{x_s^1} - \delta_{x_s^0} \right)$$

Theorem

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K has the JNP.

A JN-sequence on 2^ω

$$\mu_n \in \omega, i \in 2, s \in 2^n : \quad x_s^i := s^{\frown} iiiiiii \dots$$
$$\mu_n = \frac{1}{2^{n+1}} \sum_{s \in 2^n} \left(\delta_{x_s^1} - \delta_{x_s^0} \right)$$

Main Lemma

Let K be a compact totally disconnected space and $f: K \to 2^{\omega}$ be a continuous surjection such that $\lambda(f[U] \cap f[K \setminus U]) = 0$ for every clopen $U \subseteq K$.

Theorem

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K has the JNP.

A JN-sequence on 2^{ω}

$$\mu_n \in \omega, i \in 2, s \in 2^n : \quad x_s^i := s^{\frown} iiiiiii \dots$$
$$\mu_n = \frac{1}{2^{n+1}} \sum_{s \in 2^n} \left(\delta_{x_s^1} - \delta_{x_s^0} \right)$$

Main Lemma

Let K be a compact totally disconnected space and $f: K \to 2^{\omega}$ be a continuous surjection such that $\lambda(f[U] \cap f[K \setminus U]) = 0$ for every clopen $U \subseteq K$. For every $n \in \omega, i \in 2, s \in 2^n$ fix $y_s^i \in f(x_s^i)$.

Theorem

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K has the JNP.

A JN-sequence on 2^{ω}

$$\mu_n \in \omega, i \in 2, s \in 2^n : \quad x_s^i := s^{-iiiiiii} \dots$$
$$\mu_n = \frac{1}{2^{n+1}} \sum_{s \in 2^n} \left(\delta_{x_s^1} - \delta_{x_s^0} \right)$$

Main Lemma

Let K be a compact totally disconnected space and $f: K \to 2^{\omega}$ be a continuous surjection such that $\lambda(f[U] \cap f[K \setminus U]) = 0$ for every clopen $U \subseteq K$. For every $n \in \omega, i \in 2, s \in 2^n$ fix $y_s^i \in f(x_s^i)$. Then,

$$\mu_n = \frac{1}{2^{n+1}} \sum_{s \in 2^n} \left(\delta_{y_s^1} - \delta_{y_s^0} \right) \quad \text{defines a JN-sequence on } K.$$

Proposition (Borodulin-Nadzieja)

If K is a compact space obtained from a system of minimal extensions, then K does not have the Grothendieck property.

Corollary

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K does not have the Grothendieck property for $\ell_1(K)$.

Proposition (Borodulin-Nadzieja)

If K is a compact space obtained from a system of minimal extensions, then K does not have the Grothendieck property.

Corollary

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K does not have the Grothendieck property for $\ell_1(K)$.

Question

What about systems of length $\geq c^+$?

Proposition (Borodulin-Nadzieja)

If K is a compact space obtained from a system of minimal extensions, then K does not have the Grothendieck property.

Corollary

If K is a compact space obtained from a system of minimal extensions of length at most \mathfrak{c} , then K does not have the Grothendieck property for $\ell_1(K)$.

Question

What about systems of length $\geq c^+$?

Corollary from results of Borodulin-Nadzieja and Mercourakis

If K is a compact space obtained from a system of minimal extensions (of any length), then K has the JNP and hence does not have the Grothendieck property for $\ell_1(K)$.

Thank you for the attention!